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Full jets versus leading hadrons
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This talk will only
focus on leading hadrons



Consider multiple scattering in DIS

The quark has momentum components
q=(q,9,q9r) = (1,A2A)Q, Q: Hard scale, A <<1, AQ >> Aqcp

hence, gluons have
kJ_ ™ )\Qv k_l_ ~ )\QQ
Called Glauber gluons

3 A M. & B. Mueller Phys.Rev. C77 (2008) 054903



Assuming the medium has a large length.

Or, the parton has a long life time, 1/(A*Q)

Multiple independent scattering dominates over
multiple correlated scattering

Re-summing gives a diffusion equation for the prdistribution




Assuming the medium has a large length.

Or, the parton has a long life time, 1/(A*Q)

Multiple independent scattering dominates over
multiple correlated scattering

Re-summing gives a diffusion equation for the prdistribution

{
(p?) = 4Dt

N D QWQQSCR P o
G = TL = 3T -1 / dt <X Tr [UT (t, vt; 0)t*F “PVPU(t,vt;O)tbeM(O)va}

4 Michael Benzke et al.,
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The single gluon emission kernel

Calculate 1 gluon emission with quark & gluon N-scattering
with transverse broadening and elastic loss built in
Solved analytically, in large Q? limit.

A. M. Phys. Rev. D 85, 014023 (2012) 5



Need to repeat the kernel

TN oA S R R

What is the relation between subsequent radiations ?

In the large Q* we can argue that there should be ordering of Ir.

if 4L < Q@
dQ? L] dQ?
then QQ2 1+ ¢y 22 § %[1 + ¢q]




Validity at high resolution,
transport coefficients for near on-shell partons

p; ~ E* —p? pT ~p3 /2p

2
ransverse momentum
<p 1 > L T
L diffusion rate

Notion of transport coefficient valid in the regime of
u >> Aqcp

A hierarchy of scales: Q >> u>>Aqcp






Q is the hard scale of the jet ~ E
QA is a semi-hard scale ~ (ET)?2, A — 0

g contains all dynamics below QA
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Can explain suppressed yield of hadrons in DIS
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Data from HERMES at DESY

Three different nuclei
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one ¢ =0.1GeV%/fm

(z)/D(z)
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Fit one data point in Ne
everything else is prediction
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§=0.1 GeV’/fm
n data from HERMES
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Q?=3GeV?, v=16-20 GeV

Z=E h /EY
A. Majumder 2009 7



The v and Q* dependence
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Now factorize the final state parton and
transplant in a heavy-ion collision

10



In all calculations presented

bulk medium described by viscous fluid dynamics

D=4 1M
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Medium evolves hydro-dynamically as the jet moves through it

5
o

Fit the § for the initial T in the hydro in central coll.

Vo —_— VaN ' | ' | ' | ' | ' | ' | '
q (T ] t) — qo 0.8k ——2+1D-visc Hydro,§ = 2.2 GeV/tm, ¢ fixed ]
S 0 b w PHENX(0-30% T
0.6 =
04k - 2 13 LeFaeEgmmie -
S0 S (TO ) 0.2 E I 1 ]
< OF—+—+—— | | | |
- A% 0.8 - — - 2+1D-visc. Hydro,§ = 2.2 GeV*/fm,T__ calculated_
dNAA . 0.6-— e PHENIX (0-5%) . ]
RAA ~ dprdy
~ dN,, 02|
b’L’rL de dy O 1 | 1 |

A M. & C. Shen Phys.Rev.Lett. 109 (2012) 202301 |l




From RHIC to LHC circa 2012

:|w||wl|w||w||t : ’ﬁ_—__?
: ]:l;xﬁ’ —_— Cmaxflxed

— — T, calculated, q unadjusted -
@ CMS 10-30%

" Cpax calculated,a adjusted
CMS 0-5%

008 6 4 30 2 46 8
R (fm)

Reasonable agreement with data,
no separate normalization at LHC

Without any non-trivial x-dependence (E dependence)



McGill-AMY
=== GLV-CUJET

E Au+Au at RHIC I
E Pb+Pb at LHC |
0.2 0.3 0.4
T (GeV)

Do separate fits to the RHIC and LHC data for maximal
without assuming any kink in the q vs T3 curve

K. Burke et al. Phys.Rev. C90|g2014) no.1, 014909



Non-Monotonic behavior

what you may think this means!

T

If this is true, must effect the centrality dependence of Raa,

vo, and its centrality dependence at a given collision energy
J. Xu, J.-F. Liao, M. Gyulassy JHEP 1602 (2016) 169 14



LHC Raa without a bump in §/T°

—— HT q,, (RHIC) = 1.6 GeV*/fm, VISHNU-McKLN

Sys. error
@ CMS 0-5%

—— HT q,, (RHIC) = 1.6 GeV*/fm, VISHNU-McKLN

Sys. error
@ CMS5-10%

—— HT q, (RHIC) = 1.6 GeV’/fm, VISHNU-McKLN

Sys. error
@ CMS10-30%

—— HT q, (RHIC) = 1.6 GeV?/fm, VISHNU-McKLN

SYS. error
@ CMS 30-50%




vy at LHC without a bump in §/T°

HT g, (RHIC) = 1.6 GeV’/fm, VISHNU-McKLN
SYyS. error

CMS 0-10%

VISHNU-McKLN n/s=0.2

HT q, (RHIC) = 1.6 GeV’/fm

SyS. error
CMS 10-20%
VISHNU-MCcKLN n/s=0.2

HT q, (RHIC) = 1.6 GeV/fm HT g, (RHIC) = 1.6 GeV’/fm
SyS. error
CMS 20-30%

® SyS. error
VISHNU-McKLNn/s=0.2 &
=
=

@ C(CMS 30-40%
—— VISHNU-MCcKLN, n/s=0.2

RN
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vy at RHIC without a bump in cll\/T?’

@ PHENIX 0-10%

— HT § (RHIC) = 2.0 GeV 2/fm
—— VISHNU-MCcKLN 1/s=0.2

Z’“””'-i§$

;’”%%'::fj,i—i—”——fé

' I ' I
e PHENIX 10-20%

— HT § (RHIC) = 2.0 GeV 2/fm
—— VISHNU-MCcKLN 1/s=0.2

' I ' I
® PHENIX 20-30%

— HT q (RHIC) = 2.0 GeV 2/fm
—— VISHNU-MCKIN 1/s=0.2

20

T T |
e PHEI\IIX 30-40%

— HT q (RHIC) = 2.0 GeV %/fm
—— VISHNU-McKLN n/s=0.2




Calculating ¢ with more care

X Y(x) Alz)(x)lg; M)

. Wik
in terms of W, we get q = Z ki (k)
k



Final state is close to on-shell”

la+ 1% = 5 (1 - 21 ).

Also we are calculating in a finite temperature heat bath

2 — 72 T
4 X dy d ?JJ_koJ_e ZQqJ;y +i1k |y |

1=~ (27)3
(n|F™ 1 (y,yL)FT(0)|n)

_ B k2
) 2¢"q" = Q7 zq—l_:azlﬁ

q(q



Final state is close to on-shell”

la+ 1% = 5 (1 - 21 ).

Also we are calculating in a finite temperature heat bath

2 — 72 GRS
47-‘- X dy d ?JJ_koJ_e ’LQqJ;y "I_Zk'J_'yJ_

1=~ (27)3
(n|F™ 1 (y,yL)FT(0)|n)

_ B k2
) 2¢"q" = Q7 zq—l_:azlﬁ

q(q



Final state is close to on-shell”

la+ 1% = 5 (1 - 21 ).

Also we are calculating in a finite temperature heat bath
1= N, (27 |3

~ _ k2
q(q",q7) = QF, o= =Pt




What one usually does at this point
 Take the g to be infinity

R dy_dZy ik S
QN/ (zﬁ)ngQkJ_e “LYL (| FT L (y L g0 F(0)|n)

27

— / Y (n|F™ 1 (y")FT(0)|n)

This makes ¢ into a one dimensional quantity
an assumption of small x or high E.

e.g. in A-DIS x = (Aqcp? - u?)/2Mv =1 X107 - 2X10%

20



q at vanishing x has been taken to NLO

Z. Kang, E. Wang, X.-N. Wang, H. Xing, PRL 112 (2014) 102001
T. Liou, A. Mueller, B. Wu, Nucl.Phys. A916 (2013) 102-125
J. Blaizot, Y. Mehtar-tani, arXiv:1403.2323 [hep-ph]

E. Iancu, arXiv:1403.1996 [hep-ph]

None of these NLO corrections have been tested
in jet based phenomenology.

pA


http://arxiv.org/abs/arXiv:1403.2323
http://arxiv.org/abs/arXiv:1403.1996

What is x for a QGP

2
* Bjorken x in DIS on a proton Tp = Q
2p - Q)

_ @
2E-M M

* In rest frame of proton TR
_ dy_ ia:BP+y_ N
e In the PDF flep) = o © (Pl (y )7¢\P>

o) = [ e (Pliy) )

In the rest frame of the proton, x ~ 1

We can compare 1 values between DIS and heavy-ions

22



How about x or 1) dependence of q

* The Glauber condition prevents a direct application
of this established procedure.

]{32

0 (k”L 2;_ ) forces the incoming lines off-shell
g is a 3-D object depending on x, krt
Like a TMDPDF,

at large kr can refactorize to

regular PDF X radiated gluon

Contributions start at order ais, 23






Q is the hard scale of the jet ~ E
QA is a semi-hard scale ~ (ET)?2, A — 0

g contains all dynamics below QA



Q is the hard scale of the jet ~ E
QA is a semi-hard scale ~ (ET)?2, A — 0

g contains all dynamics below QA



Input PDF at Q=1 GeV~

X X X

Sea like Wide Valence Narrow Valence

25



Sea-like PDF of the OGP

Gx)=A x)

C12)1x) (Q°=1GeVH

G(x)=Ax
s = Q*=2GeV’
— — Q’=10GeV’

—— Q’=100GeV’

— — Q=10GeV*
I —"" Q2=10 O G€V2 'Ccccc,;,:?—,::..

1 I 1 I
Sys. error e PHENIX 0-5 % 2012

— G(x)=A x )

® CMSO0-5%

(I-%)




Narrow valence like PDF of QGP

(1/10)

Gx)=Ax""(1-x)° (Q*=1GeV?)"

=+ Q'=2GeV’
— — Q’=10GeV’
— Q’=100GeV’

40 60
E (GeV)

N L
SyS. error B G(x)=Ax 1o (1—x)6
(1/10) . e PHENIX 0-5 % 2012
— G(x)=AxX - X

® CMSO0-5%

IEEEE




Wide valence like PDF of the OGP

T

L1 | o Q=100GeV"

G(x)=Ax"(1-x)” (Q°=1GeV°H

= Q’=2GeV’

— — Q’=10GeV’

SYyS. error

CMS 0-5%

— Gx)=AX

(172)

(172)

Gx)=Ax" 1-x)

40 60
E (GeV)

PHENIX 0-5 % 2012

G(x) = X(1/2)

1-x)°




What does this mean?

* Possible resolution of the JET puzzle
* Based on consistent Q* evolution of §
* Should have x evolution at high energy

* Will be done in reverse very soon, will get PDF’s with
bands (by Quark Matter !!!)

* Applying TMD systematics, may complicate this
interpretation.

29



Near side and away side correlations

A. Majumder, et. al., nucl-th/0412061

" O STARh'h P e = 0-8GeV '
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0 - 10

A wide range of single particle observables can be explained

by a weak coupling formalism
30




